Homework

October 28, 2019

1 Lecture 2

Useful definitions. Consider set $Q \subseteq \mathbb{R}^{n}$ and a point $x_{0} \in Q$. Tangent cone for Q at x is the set
$T\left(x_{0}, Q\right):=\left\{s \in \mathbb{R}^{n}: \exists \alpha(\lambda)=o(\lambda) \in \mathbb{R}^{n}\right.$ s.t. $x_{0}+\lambda s+\alpha(\lambda) \in Q, \forall \lambda$ sufficiently small $\}$.
If Q is convex, $T\left(x_{0}, Q\right)$ coincides with the cone of feasible directions

$$
T\left(x_{0}, Q\right)=\overline{\left\{\lambda\left(x-x_{0}\right): x \in Q, \lambda \geq 0\right\}} .
$$

Given a cone K, the conjugate cone is

$$
K^{*}:=\left\{s \in \mathbb{R}^{n}: s^{T} x \geq 0, \forall x \in K\right\} .
$$

If the set Q is convex, then $-T^{*}\left(x_{0}, Q\right)$ is called normal cone for Q at x_{0}

$$
N\left(x_{0}, Q\right):=\left\{s \in \mathbb{R}^{n}: s^{T}\left(x-x_{0}\right) \leq 0, \forall x \in Q\right\}
$$

Optimality conditions for minimization problem

$$
\min _{x \in Q} f(x)
$$

- If f is general differentiable, Q is general, and x^{*} is local minimum, then $\left\langle\nabla f\left(x^{*}\right), s\right\rangle \geq 0$ for all $s \in T\left(x^{*}, Q\right)$. (Equivalently, $\nabla f\left(x^{*}\right) \in T^{*}\left(x^{*}, Q\right)$).
- If f is general differentiable, Q is convex, and x^{*} is local minimum, then $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in Q$. (Equivalently, $\left.-\nabla f\left(x^{*}\right) \in N\left(x^{*}, Q\right)\right)$. If f is convex, this is also a sufficient condition.
- If f is general convex, Q is convex, and x^{*} is local (and global) minimum,

$$
0 \in \partial\left(f\left(x^{*}\right)+\delta\left(x^{*}, Q\right)\right)=\partial f\left(x^{*}\right)+N\left(x^{*}, Q\right)
$$

(Equivalently, there exists $g^{*} \in \partial f\left(x^{*}\right)$ such that $\left\langle g^{*}, x-x^{*}\right\rangle \geq 0$ for all $x \in Q$). Since f is convex, this is also a sufficient condition.

1. Solve the optimization problem using appropriate optimality conditions listed above

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|x-a\|_{2}: c^{T} x \leq b\right\},
$$

where $a, c, b \in \mathbb{R}^{n}$ are given parameters. Consider cases $c^{T} a \leq b$ and $c^{T} a>b$. Hint: is the problem convex? Is the objective differentiable? Which optimality condition should be used in this case.
2. Solve the optimization problem using appropriate optimality conditions listed above

$$
\min _{(x, y) \in \mathbb{R}^{2}}\{3 x+2 y: \sqrt{|x|}+\sqrt{|y|} \leq 2, x \leq 0, y \geq 0\} .
$$

Hint: is the problem convex? Is the objective differentiable? Which optimality condition should be used in this case.
3. Solve the optimization problem using the Lagrange function and KKT conditions.

$$
\min _{(x, y) \in \mathbb{R}^{2}}\left\{(x-1)^{2}+(y+1)^{2}: y \geq|x|, 3 y+x=4\right\} .
$$

4. Find the Lagrange dual for the problem

$$
\min _{X \in \mathbb{R}_{+}^{n \times n}}\left\{\sum_{i, j=1}^{n}\left(C_{i j} X_{i j}+X_{i j} \ln X_{i j}\right): X 1_{n}=a, X^{T} 1_{n}=b\right\},
$$

where $C \in \mathbb{R}_{+}^{n \times n}$ is a given matrix, $a, b \in \mathbb{R}^{n}$ are given vectors and $1_{n} \in \mathbb{R}^{n}$ denotes a vector with all components equal to one. Consider $X \in \mathbb{R}_{+}^{n \times n}$ as a constraint given by set $Q=\mathbb{R}_{+}^{n \times n}$ rather than a system of inequality constraints.

5 . Find the Lagrange dual for the problem

$$
\min _{x \in \mathbb{R}^{n}}\left\{c^{T} x: A x=b, x \geq 0\right\},
$$

where $A \in \mathbb{R}^{m \times n}$ is a given matrix, $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$ are given vectors and inequality $x \geq 0$ is componentwise.

